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New Symmetry Group for Elementary Particles. I. Generalization 
of Lorentz Group Via Electrodynamics*!f 
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By using the definition of the photon angular momentum a connection between the Lorentz group and the 
unitary symmetry group of the strong interaction is established. The new group (to be called ILU4) is a 
twenty-parameter group containing SU3 and the inhomogeneous Lorentz group as its subgroups. The space-
time and internal symmetries of dynamical systems may be described by a single symmetry group. The new 
symmetry group imparts a unitary content to every Lorentz frame of reference. 

I. INTRODUCTION 

TH E role of symmetry principles in describing 
elementary particle events has gained great 

impetus from the recent generalizations of the isotopic 
spin concept for strong interactions. The models used in 
introducing larger groups are either Sakata's symmetri
cal theory1 of strong interactions or the so-called "Eight
fold Way" proposed by Gell-Mann2 and also by 
Ne'eman.3 The invariance of the pion-nucleon inter
action under unitary spin (or SU3) transformations has 
replaced charge independence or invariance under 
isotopic spin (or SU2) transformations of the forces 
between nucleons. The experimental facts demonstrated 
the conservation of two quantum numbers, hyper-
charge, and isotopic spin in place of the isotopic spin 
conservation alone in Kemmer's symmetrical theory.4 

Despite the great success of the "Eightfold Way" it 
suffers from the same drawback as its predecessor the 
isotopic spin invariance of strong interactions. In the 
first place, full unitary symmetry requires a mass 
degeneracy, mass differences lead to symmetry-breaking 
interactions. Furthermore, the introduction of fictitious 
spaces like isotopic spin space or unitary space as dis
tinct from the space-time structure of elementary 
events has long been recognized to be quite unsatis
factory for further progress towards a real understand
ing of the dynamical principles underlying elementary 
particle interactions. The group that describes the 
isotopic spin symmetry is a continuous subgroup of the 
full unitary group in two dimensions. I t is denoted by 
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SU2. The only part of the isotopic spin group that corre
lates with physical facts corresponds to rotations by 
180° and 360°. In this sense "observed" isotopic spin 
symmetry is isomorphic to the permutation group 
rather than to the three-dimensional rotation group. A 
further extension of the charge-independence hypothesis 
(i.e., hypercharge and charge independence), requiring 
greater symmetry beyond that contained in the isotopic 
spin group, needs the introduction of a larger group. 
The symmetry group in question is the three-dimen
sional unitary unimodular group, SU3. In this case also 
only discrete SU3 operations are relevant for elementary 
particle events. Therefore the observed part of SU3 is 
also isomorphic to a permutation group. In the existing 
formalism there is no particular selection rule excluding 
continuous operations in unitary spin space. The choice 
of the observed part of the group is made as a result of 
comparing the facts and the mathematical formalism. In 
short, the group SU3 is not like the inhomogeneous 
Lorentz group in which all Lorentz transformations are 
physically acceptable. 

In the following we propose a generalization of the 
inhomogeneous Lorentz group to describe all symmetry 
properties of all elementary particles as embedded in 
only one symmetry group, ILU4. In this approach the 
unitary properties of the elementary particle events are 
not separable from their space-time properties. Every 
Lorentz frame of reference, in addition to spin and 
parity, shall assume finite dimensional unitary proper
ties. I t must be pointed out that what we propose to 
discuss is only a certain symmetry group, not the actual 
dynamics of the particles. As in the case of the Lorentz 
group itself, to some as yet unknown quantum-mechani
cal system of equations there will correspond a repre
sentation of ILU4. The representations of ILU4 can, to a 
large extent, replace quantum-mechanical equations. 
This means that at this stage we do not know the 
possible connections between observables at a given 
instant of time. 

II. THE UNITARY GROUP IN ELECTRODYNAMICS 

In this section, to prepare the ground for the intro
duction of LU4 (homogeneous part of ILU4), we shall 
give a different discussion of the basic elements of SU§ 
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which is somewhat less ad hoc and also more pedagogical 
in nature than the usual treatments of this subject. 
Especially, it is rather heart warming to see that electro
dynamics can manifest some aspects of the unitary 
symmetry group as it did in the case of Lorentz group. 
All that is required consists in recasting the equations 
of electrodynamics in terms of a spinor quantity or 
complex vector £+£FC where £ and JC refer to electric 
and magnetic vectors, respectively. I t is a well known 
fact that the wave equation for a free photon uses the 
complex three-dimensional vector 2C=£+i3C as a wave 
function of the photon.5 A group theoretical motivation 
for introducing the complex vector & was discussed in 
connection with the three-dimensional complex orthogo
nal group.6 

The six angular momentum operators J^ of the 
photon can be written in the form 

2c J 

where the energy momentum tensor of the electro
magnetic field is introduced by 

? > = * < x | i U x > , M , * = l , 2 , 3 , 4 . (II.2) 

Here the column vectors | %) and | 77) are given by 

<)= <x|=[Xi*,X2*,X3*], | X ) = ( 8 r £ ) W h > , 

E=photon energy, and the ten 3X3 matrices B^ 
be defined as 

BAA—KA, 

Bii—Bii—Ki, 

Bij—KiKj+KjKi— 8{j, 

h i = l , 2 , 3 , (IL3) 

i.e., as bilinear combinations7 of the generators of 
infinitesimal rotations in three dimensions (or spin-1 
matrices), 

Kyr 

K^ 

ro o o* 
o o - ; 

[o i oj 
0̂ -i 0' 
i 0 0 
0 0 0, 

, K2^ 
r o 0 i l 

0 0 0 
-i 0 0 

, Ki~ Bu~ 

J 

1 0 (T 
0 1 0 
0 0 1̂  

(II.4) 

The d<ry in (II. 1) represent the four-dimensional surface 
elements (dx%dxzdx^dxzdxxdx^dxxdxtfLx^dxxdx^dx?). 

In (II. 1) the wave function \rj) (or in vector notation 

5 B. Kur§unoglu, Modern Quantum Theory (W. H. Freeman and 
Company, San Francisco, 1962). This will be referred to in this 
paper as MQT. 

6 B . Kursunoglu, J. Math. Phys. 2, 22 (1961). 
7 We shall use the usual Lorentz metric gy.v (gtj — — 5#, 

gi4 = g^i — 0} #44=1), for raising or lowering indices. Throughout 
this paper Greek and Latin indices run through 1, 2, 3, 4 and 
1, 2, 3, respectively. The notation is the same as in MQT. 

rji, i=l, 2, 3) is quantized and satisfies the wave 
equation 

M(d/dt)\r,) = H\n), (II.5) 

and the supplementary condition 

(V-i|)|¥> = 0, (II.6) 

where 
H=cK*p, p = — i ^ V , 

and 1^) is the state vector of the quantized electro
magnetic field. A detailed discussion of this quantiza
tion procedure can be found in MQT, p. 307 (see also 
Chap. II) . From the above it follows that at any instant 
of time, the space and time components of J\v can be 
written as 

-f(t,\Fi\r,)d*x, Qi^fWHtWx, (11.7) 

(%lJ39y-xJBJky)E\ii)d<r'', (II . l) w h e r e 

Fi=Li+1iKi, Hi^XipA—XApi+ifiKi, (II.8) 

The Hermitian operators 7\ and Qi are a set of genera
tors for the homogeneous Lorentz group. 

Now let us consider the properties of the B matrices. 
By using the commutation and anticommutation 
relations 

[KiiKj'} = ieijlKlj (11.9) 

KiKjKl+KiKjKi=8ijKl+8JiKij (11.10) 

we further obtain the commutation relations 

lKifBj{] = i(eijsBsl+eilsBsj), (11.11) 

[_Bij,Bu~] = i(8i8€jim-\- duejsm-{- 8jseum-\- 8ji€ism)Km. (11.12) 

Hence, the system of Hermitian matrices B^ is closed 
under commutation. The commutator of any two of 
75's is a linear combination of the B's. These matrices 
are a set of generators of nine-parameter continuous 
group of unitary transformations.8 

The B matrices further satisfy anticommutation rela
tions of the form 

[_KhBn-]+= 8ijKl+8ilKj, (11.13) 

\_Bii,Bi^\+= 8u8js-{-hiShji 

~~ (€isk€jlm-{-Cilkejsm)Bkm • ( H . 1 4 ) 

Hence 
trace (BijBn) = 2 (8u8js-\-8iS8ji) — 8ij8is. (11.15) 

8 In connection with the three-dimensional complex orthogonal 
representation of the Lorentz group, these matrices were first 
introduced by the author in Ref. 6. See also MQT, Chap. VIII. A 
representation used more frequently in the SU3 literature employs 
the normalization Norm (Bi/) = 1, Norm (Bu') = l, and trace 
(Bi/)~0. In this case the above definitions can be replaced 
by V - K V f ) ( £ * — * * * ) , Bn'=Ki/>/2, Bu^Bu/^3. The B„ 
satisfy the same commutation relations except for the factors l/v2 
appearing on the right-hand sides of (II.9), (11.11), and the factor 
3/4V2 on the right-hand side of (11.12). For the present discussion 
the normalization of the U's is not relevant. 
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From the definitions (II.3) and (II.4) it follows that the particular set of generators for Vz is given by 

B1 

B21— 

- 1 0 0" 
0 1 0 
0 0 1. 

y 

0 0 0̂  
0 0 - 1 
0 - 1 0J 

B22~ 

, Bzi= 

1 0 v 
0 - 1 0 

lo 0 1 
> 

r 0 0 - r 
0 0 0 

, - 1 0 OJ 

-Z?33 = 

, ^ 1 2 — 

'1 0 
0 1 

.0 0 

r 0 
- 1 

. 0 

0̂  
0 

-u 
1 

- 1 0 
0 0 
0 0. 

(11.16) 

and Bu= K{ as defined by (IL4). Because of the identity 

Bu~ ^ 1 1 + ^ 2 2 + ^ 3 3 , 

there are only nine linearly independent matrices. The 
latter fact is an expression of the well-known property 

Trace (T,v) = Tu- Tn- T22- r 3 3 = 0. (II. 17) 

Thus the B matrices defined via the definition (II.2) of 
Tfji,, could not have been a complete set of generators for 
infinitesimal unitary transformations without the 
Lorentz-invariant property (11.17). In other words the 
unitary symmetry would be broken without (11.17). 
The B matrices as described above belong to the Lie 
algebra of U3. For any unitary member of the group, one 
can put 

U' = eidU, (11.18) 

where U is a unitary matrix of determinant 1. This 
decomposition (i.e., U 3 = Z7iXSU3) of the group U3 can 
be obtained by forming two traceless linear combina
tions of Blh B22, Bn. 

Under a Lorentz transformation of the coordinates 
we can obtain the corresponding transformations of the 
Bpy. Thus if L is a Lorentz matrix the corresponding 
transformations are 

\xf) = L\x) > | # ) = 

for the coordinates, and 

lx'H*|x> 

(11.19) 

(11.20) 

for I x), where R belongs to the group of complex 
orthogonal transformations.5,6 Thus there exists a 
correspondence between L and R transformations such 
that 

R^B^R^L^L/Bap. (11.21) 

The relations (11.21) do not represent a connection 
between Lorentz and unitary groups since both R and L 
correspond to the different representations of the same 
group. Furthermore, translations of the coordinates do 
not appear in (11.21). However, all that (11.21) suggests 
refers to the fact that the Lie algebra of U3 can, in con
nection with the transformation properties of the elec
tromagnetic field, appear in Lorentz-covariant state
ments like (11.21). This rather suggestive representation 

cannot be established if one adheres to the usual 
representation where the generators of SU3 are involved 
in the elementary particle interactions as a linear array 
of 8 matrices rather than as the components of tensor 
operator B^ as displayed by (11.20) and (11.21). The 
same B matrices also appear in the definition (II. 1) of 
the photon angular momentum operator. 

The integral of (II.2) for the quantized | rj) will consist 
of a sum of terms of the form 

S^^hi^lB^a), \a) = 
01 

#2 

.#3J 

where the three-dimensional oscillator 
satisfy the commutation relations 

(11.22) 

operators a* 

(11.23) 

The operators S^ as defined by (11.22) satisfy the 
commutation relations (II.9), (11.11), and (11.12). 
Hence we see that the Fock representation (see Chap. 
VII in MQT) of the three-dimensional harmonic oscil
lator provides, via the definition (11.22), a representa
tion of the three-dimensional unitary group U3. 

In order to exhibit the Lie algebra of SU3 in a 
convenient form we can begin with the following repre
sentation of the Lie algebra of SU2. Consider the four 
Hermitian operators 

I^i(N\r,\N)9 (11.24) 

where the n (i= 1, 2, 3) are the usual Pauli matrices and 
T4 is the 2X2 unit matrix. The symbol | N) refers to the 
coordinates of a two-dimensional oscillator 

\N) 

The elements of the Lie algebra of SU2 can be repre
sented in the form of a 2X2 matrix, where only the 
usual ladder operators appear. We form a traceless 
operator by putting 

5 2 = i trace (r"7M) - r"/M 

where 
r / i / M = 74/4— T1I1— T2I2-

Hence, using (11.24), we obtain 

T3/3 

S l~\j+ "'"J' (11.25) 
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where I+=ap+an, I-=an
+ap, Io=i(ap

+ap—an
+an) 

^iiNp—Nn)' The operators I0 and I2 form a complete 
commuting set, where / is the eigenvalue of 

/ 2 =£ t r a c e ( 5 2 ) 2 - / o 2 + | ( ^ - + / - / + ) = ^ ( / + l ) , 
I=h (ap+ap+dr+an) = \ (N.p+Nn). 

The generalization of (11.24) and (11.25) to SU3 is 
based on the definition 

S9=HB^S^-i t r a c e ^ S ^ ) ] . (11.26) 

Hence, using (11.22), we get the useful representation 

av+io i. 
$z = hY-h 

J- -YJ 
(11.27) 

where the off-diagonal elements I+=ap
+an, I-.— an

j~ap, 
S-=ap

+a\, s+=a\+ap, J+=an
+aA, J-=aA+an are the 

ladder operators of the associated Lie algebra of SU3. 
The suffixes 1, 2, and 3 of ai have been replaced by 
(p,n,A\ respectively. The operators Y and 70 are the 
only mutually commuting generators in the Lie algebra. 
Thus the group SU3 is of rank two. The operators Y 
and Jo are given by 

Y=Np+Nn-iB=$B+S, 

Io=h(NP-Nn), 

(11.28) 

(11.29) 

where B = NP+Nn+Nn, S=-NA and where Np 

= ap
+ap, Nn=an+an, ^A=^A + ^A are number operators. 

In this case the operators Jo, Y and F2 form a complete 
commuting set, where 

P = i t r a c e ( 5 3 ) 2 = P ( P + l ) . 

As in the case of SU2 the trace operation here must be 
understood as the sum of diagonal elements in the three-
dimensional matrix S32 whose elements themselves are 
operators. It is clearly seen from the above discussion 
of SU3 that it has double-valued representations. 

In the limit of full unitary symmetry (which may be 
expected to hold rigorously at very high energies), or in 
the absence of symmetry breaking perturbations one can 
obtain a manifestly Lorentz and unitary invariant 
theory in which a pseudoscalar octet of mesons is 
coupled to nucleons and the A particle This can most 
conveniently be achieved by using the analogy with the 
SU2 invariant theory 

We introduce the 4-vector <£>M (/*= 1, 2,3, 4) in a linear 
combination 

G=§ trace($"77,)—S^r,, 

and exhibit the coupling of w mesons to nucleon as 

H^iGtfly&lf), (H.30) 
where 

and the 0 operator has the form 

The generalization of (11.30) to the octet model 
follows if we define the traceless operator f in the form 

f=J [ J tmcei^B^-^B^, (11.31) 

where ;/v is a real symmetric tensor in four-dimensional 
space. The operator f can be written as 

r= 
(1/V /6)X 0+(1/Y2)XO 

7T+ 

TT" K-

(1A/6)X0- ( l M ) f 0 K« 
K« - (V! )*o 

(11.32) 

where we have used the notation 

! (^11+^22-2^33)= (Vl-)Xo, ^11—^22= (l/v5)iro, 

and 

^12±i^B4 = TT̂  , ^ 3 1 ± ^ 2 4 = K± , ^ 2 3 + ^ 1 4 = K° , 

The normalization is such that the squares of the 
diagonal terms sum to 7ro2+Xo2. The effective coupling 
of the octet to the (pnA) system is 

Hr=iG(x\7,t\x), (H.33) 
where 

IxH 

This is a known unitary spin-invariant theory replacing 
isotopic spin-invariant theory. 

III. THE NEW GROUP (ILU4) 

So far we have discussed the construction of the 
group SU3 from the Lie algebra of the three-dimensional 
rotation group. Bilinear combinations of the generators 
Ki, K2, Ks provided a complete set of generators of 
infinitesimal unitary transformations in three dimen
sions. Any connection found with Lorentz group was 
merely a formal manipulation without any extra 
physical consequences. However, the method has 
provided us with a rather novel technique for construct
ing new groups out of known physically relevant groups. 
It is, of course, sufficient to find only one set of genera
tors for a group, since all other representations of the 
group can be found from the commutation relations of 
these generators. 

It has been shown by Wigner9 that the Lorentz group 
9 IS. W%ner? Ann, Math, 40? 149 (1939), 
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has no finite dimensional unitary representations. There
fore it is not possible to establish a connection between 
the finite dimensional unitary invariance of the ele
mentary particle interactions and their Lorentz in
variance properties. Only a group larger than the 
Lorentz group can be expected to possess both finite and 
infinite dimensional unitary representations. Therefore 
the wave function describing a physical state can not 
be completely given by just specifying a Lorentz frame 
of reference. With every Lorentz frame of reference we 
must associate additional properties pertaining to a 
finite unitary covariance of the state. An example of a 
symmetry group with the above-mentioned properties 
can be constructed by generalizing the techniques used 
in the previous section. Instead of bilinear combinations 

of the generators of the three-dimensional rotation 
group (which is a subgroup of the homogeneous Lorentz 
group) we shall consider bilinear combinations of the 
homogeneous Lorentz group generators. In the spirit of 
the theory discussed in the previous section we again 
take a symmetrical tensor operator which is formally 
the same as the electromagnetic field energy momentum 
tensor. Thus, we write the traceless natrices 

Tr=ig^afiMt#->h(Mll.'M9p+Mw.>M„), (IIL1) 

where 

rrM„=o, (III.2) 

and where the M^v= - -MvlJ. are a set of six generators of 
infinitesimal homogeneous Lorentz transformations de
fined as (see MQT, p. 50) 

Afl = Af23 = 

N^Mu= 

0 0 
0 0 -
0 i 
0 0 

0 0 
0 0 
0 0 

-i 0 

0 
-i 

0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

) 

~i 
0 
0 
0 

M2=Mzi= 

^ 2 = I f 24 = 

0 
0 

— i 
0 

0 
0 
0 
0 -

0 
0 
0 
0 

0 
0 
0 

-i 

i 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

> 

o" 
— i 

0 
0 

Mz=Mi2= 

NZ=MU= 

0 
i 
0 
0 

0 
0 
0 
0 

— i 
0 
0 
0 

0 
0 
0 
0 -

0 
0 
0 
0 

0 
0 
0 

-i 

0 
0 
0 
0 

i 

0 
0 

— i 
0 

(III.3) 

The fifteen generators J^ (also M^) and AM„ (also rM„) of the group L0U4 satisfy the commutation relations 

[_JnvjJaPj = ^ \gavJn$-\- gfivJan ganJv&~~ gp$Jav) > 

[ A M J , , / a j J = i(gav&tip+ gatApv— gpAan— g^av) , 

[AnvAct^^KgPvJctii-^grfJav— gavJn$— ganJyp) , 

( I I I . 4 ) 

( I I I .5 ) 

( I I L 6 ) 

has been used and where A^ is an where in the derivation of (III.5) and (III.6) analogy with (11.10) for My, 
abstract set of generators of the group. 

From (III.4), (III.5), and (III.6), we observe that the set of matrices J^ and AM„ are closed under commutation. 
Thus the commutator of any two of the operators Jm AM„ is a linear combination either of the J^ or the AMV. These 
matrices constitute a set of generators for the fifteen parameter continuous transformation group L0U4 which is a 
subgroup of 16-parameter homogeneous group LU4. 

A set of matrices representing the A^ can be found by using (III . l) and (III.3) 

F33 — : 

3 
0 -
0 
0 

- 1 
0 
0 
0 

0 0 
-1 0 
0 - 1 
0 0 

0 0 
- 1 0 

0 3 
0 0 

1 

r"44—~ 

- 1 0 
0 3 
0 0 
0 0 

1 0 0 
0 1 0 
0 0 1 
0 0 0 

0 
0 

- 1 
0 

0" 
0 
0 

- 3 

T23 — 

r i 4= 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 0 

r « i = 

0 
0 
0 
1 

0 
0 
0 
0 

0 
0 
0 
0 

1 
0 
0 
0 

, r«24— 

0 0 1 0 
0 0 0 0 
1 0 0 0 
0 0 0 0 

0 
0 
0 
0 

r i2= 

0 1 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 

0 
0 
0 
1 

0 
0 
0 
0 

0 
1 
0 
0 

, 1 34 — 

0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 1 
-1 0 

(III.7) 

(III.8) 

(III.9) 

file:///gavJ
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1 
0 
0 
0 

0 
- 1 

0 
0 

0 0 
0 0 

- 1 0 
0 1 

The following properties of these matrices must be 
rioted: (i) The matrices Tij (i, j= 1, 2, 3) are Hermitian 
and commute with F, (ii) The matrices I \ 4 (i— 1, 2, 3) 
are anti-Hermitian and anticommute with F, where 

(III. 10) 

From (i) and (ii) it follows that the matrices rM„ can be 
looked upon as generators of complex Lorentz trans
formations10 which (a) leave the indefinite quadratic 
form 

(Z\F\Z)= | * 4 | 2 - | * i | 2 - 1 * * | 2 - | * B | 2 ( i n . i i ) 

invariant, that is they satisfy the conditions 

DFL = F (III. 12) 

(where the sign * denotes Hermitian conjugation and L 
is now a complex Lorentz matrix), and that (b) the 
determinant of L is 1. The above conditions are satisfied 
also by members of L0U4 generated by M^ defined by 
(III. 3) which are also generators of the homogeneous 
Lorentz group (the latter is a subgroup of L0U4). 

The fact that the group SU3 is a subgroup of L0U4 is 
clear from the quadratic form (III. 11). However, it is 
more convincing to demonstrate this fact in terms of the 
Lie algebra of L0U4. We shall write the commutation 
relations (III.4), (III.5), and (III.6) of the L0U4 Lie 
algebra in three-dimensional notation putting 

J ij~ tijlJ I , J ii ~ D% \ 
we obtain 

[Pi,Dj]——iei3iJi, 

[_Ji,Dj~] = ieijiDi, 

[Ji,Aji] — i(eijsAsi-{-eiisAsj), 

[DijAjf] = i (8nAj4+ dijAu), 

[7t-,A44] = 0 , 

[ A y W ] = 2iA;4, 

[PiyAj^] = i(bijAu+Ai3) , 

(111.13) 

(111.14) 

(111.15) 

(111.16) 

(III.17) 

(111.18) 

(III.19) 

(111.20) 

(111.21) 

[_Aij,Au~\ — i (8iS€jik~\- diitjs *+ djs€uK-\~ 8ji€iS K)Jk, (111.22) 

lAihAul=i^jiDi+duDj), (111.23) 

[ A , 4 , A y 4 ] = ~ ^ z / z , (IIL24) 

[A;4,A44]=-2;£>;, (111.25) 

[A4 4 ,A,7]-0. (111.26) 

Now, a comparison of (III. 13), (III. 16), and (111.22) 
with (II.9), (11.11), and (11.12), respectively, shows 
that SU3 is a subgroup of L0U4. At this point it may be 
tempting to see whether the above commutation rela
tions contain an inhomogeneous character in them. We 
shall, therefore, compare them with the commutation 
relations of the usuali nhomogeneous Lorentz group. In 
addition to the commutation relations (III. 13), (III. 14) 
and (III. 15), the inhomogeneous Lorentz group com
prises the commutation relations 

, ) , (111.27) 

(III.28) 

between angular momentum and linear momentum 
operators, or in three-dimensional notation we write 

lJi,p3~l = iti3ipi, 

[Dijpj^idijpA, 

LJi,pi] = 0 

[_Di,p^] = ipi. 

(111.29) 

(111.30) 

(111.31) 

(111.32) 

Hence we see that if we assume the correspondence 
|A44 —> pi and Ai4 —> pi, the commutation relations of 
L0U4 corresponding to (111.27) are given by (III. 18), 
(111.21), (111.19), and (111.20), respectively. With the 
exception of (III.21) the remaining rules are of the same 
form as (111.29), (111.31), and (111.32). Furthermore, 
the (111.24) show that Au(—> pi), do not commute, nor 
does JA44(—> p±) with the Al4, as shown by (III.25). 
Thus the commutation relations (III.28) are completely 
modified.11 

In this connection, an interesting speculation is to 
think of translations in microphysics as discrete opera
tions. However, this seems to conflict with the well-
established concept of translation in quantum me
chanics. I t would also violate the usual commutation 
laws for small momenta, becoming less and less im
portant at very large momenta. Furthermore, to be 
compatible with the aim stated at the beginning of this 
section we must seek a more natural way to introduce 
translations where one can accommodate both finite and 
infinite dimensional unitary representations in the same 
transformation group. In this case spin and unitary 
spin may be recognized in the "little groups" within the 
infinite dimensional unitary representations of the new 
group. 

A simple way is to observe that the commutation 
relations (III.4), (III.5), and (III.6) of L0U4 are also 

10 The possibility for a complex Lorentz group was stipulated 
earlier in connection with two-valued representations of Lorentz 
group [see p. 240, Eq. (VIII.5.55) in MQT]. 

11 It is interesting to note that replacement of A and A»-4 by iDi 
and iAu, respectively, in the commutation relations for L0U4 yields 
the Lie algebra of the group SU4. The latter contains 0 4 (the four-
dimensional orthogonal group) and SU3 as subgroups. Thus the 
relation of the new group to SU4 is similar to the relation of 0 4 to 
the homogeneous Lorentz group (see p. 255 of MQT). Therefore, 
representations of L0U4 can be constructed from the representa
tions of SU4. 

in.ii
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satisfied by the operator representations 

— J m=Xppv— ocvpii, (111.33) 

AMP= %npv+%ppt—igpvXi>pp, (111.34) 

where the coordinates x^ and momenta p^ satisfy the 
usual commutation relations 

where 

DW>J = ig/iv, LJW>J==0. (111.35) 

We may, now, easily establish the commutation 
relations 

Ly V-vipa\~ ' »Pv-gc vPtx) i (111.36) 

Lklu,,pal = i(g«ppr+gavpti--%gl»>P*) • ( H I . 3 7 ) 

In this case we have, together with (III.4), (III.5), 
(III.6), the Lie algebra of a 20-parameter inhomo-
geneous group. The group includes, of course, trans
formations of the form exp(i<£). For this group p^p* is 
no longer a group invariant, except for the inhomo-
geneous Lorentz group which is now a subgroup of the 
generalized inhomogeneous Lorentz group ILU4. This 
seems to be a nontrivial way of combining both space 
time and internal symmetries of dynamical systems into 
a single group, since SU3 also is a subgroup of ILU4 . 
Unlike the inhomogeneous Lorentz group, the rest mass 
does not, by itself alone, commute with the new group. 

The next important step in this direction is to dis
cover the implied relevant dynamics by ILU4. If the 
latter turns out to be too ambitious we must at least 
find a physical parameter whereby one can discuss some 
kind of "contraction" of ILU4 so as to yield inhomo
geneous Lorentz group in some limit of this parameter. 

A further relevant, but not too pressing at present, 
remark is to look upon ILU4 transformations valid only 
locally and not applicable over an extended space time 
region. In this latter sense the group ILU4 may be 
envisaged as a subgroup of an infinite continuous group 
in the elements of which arbitrary functions occur. In 
this case, gauge group, and coordinate transformations 
in general relativity may be studied with a broader view. 

IV. THE BASIC QUANTUM NUMBERS OF LU4 

Following up the method used in Sec. I I for the discus
sion of SU3 we introduce the operators aM (/*= 1, 2, 3, 4) 
which obey the commutation relations 

[aM,a, t] = ^ . (IV.l) 

The sixteen linear operators QnV—d^dv satisfy the 
commutation relations 

ZQwQafil = g«&ri- grfQcc* (IV.2) 

and can be used to construct generators of infinitesimal 
LU4 transformations by putting 

AM„=9TCgM„— (aII
fav+av

fafl) = (a\FTflp\a), (IV.3) 

JHP= i(ajay— aMn) = (a \ FM ^ | a), (IV.4) 
12 See MQT, p. 254, Eq. (VIII.8.3). 

(IV.5) 

These expressions satisfy the commutation relations 
(III.4), (III.5), and (III.6). The operator 311 com
mutes with AMV and J^. I t will be related13 to a new 
baryon number b by 

ft= - ±m,-l = i(N1+N2+Nz~NA) (IV.6) 

The analog of the operator statement (11.26) in the 
present case is obtained with the T and M matrices 
defined by (III.3), (III.7), (III.8), (III.9), as 

' i ( £ + F ) + / o /+' 
•/_ i ( J B + F ) - J 
s+ J-
11+ v+ 

S-. 

J+ 
- F 
Q+ 

— U-

— u_ 

- ? -
- £ J 

where 

/ 0 = i ( # l - t f 2 ) s 

(IV.7) 

£ = NA+b, Y=-N3+b (IV.8) 

and Na=aaaJ ( a = l , 2, 3, 4, not summed). The off-
diagonal operator assignments, in this case, are 

7+ = a i a 2
t , 

and 

g + = a 3 # 4 + , 

I-.= 0,2(11* 

U^.= d4d^ 

V—~d^d2^ 

(IV.9) 

(IV. 10) 

The operators Jo, <£, and F are, besides b, the only 
mutually commuting members of the LU4 Lie algebra. 
Hence, the group LU4 is of rank four. The additive 
operators Jo, £ , F will be assumed to refer to isotopic 
spin projection, lepton number, and hypercharge, 
respectively.14 (IV.8) shows that the hypercharge F is 
related to the new baryon number by 

Y=b+S, (IV.l l ) 

where 5 = — ATz is the strangeness quantum number. The 
lepton and baryon numbers are related through N* 

13 Thus LU4 is decomposable into the product LU4=UiXL0U4 
where Ui = exp (̂ 02flZ) is an LU4-invariant unitary operator and 
L0U4 is now the fifteen-parameter subgroup of LU4 discussed in 
Sec. III . 

14 It may seem somewhat hasty to name £ as "lepton number" 
rather than allowing it to maintain its original place in the Latin 
alphabet. However, this operator assignment can be regarded as a 
suggestive speculation since, at present, one does not know how 
various elementary particle interactions will fit into the new group. 
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which, presumably, is related to muon number16 Si. 
Thus from (IV.8) we write 

£~b = St. (IV.12) 

Some of the commutation relations in terms of the 
ladder operators appearing in (IV. 10) are 

[3Tl,/±] = [m ,5 ± ] = [3TC, J ± ] = [3TC,«±] 

[ £ , 7 ± ] = [ £ , / ± ] = [ £ , 5 ± ] = 0 , 

[ £ , « ± ] = ± « ± ) D B , I > ± ] = ± I / ± , (IV.13) 

[ £ > ? ± ] = ± ? ± , 

[ F , / ± ] = 0 , [ F , * ± ] = ^ ± , [ F , / ± ] = ± / ± , 

[F ,«±] = 0 , [ F , , ± ] = 0 , [ F , f a ] = T g ± . 

We now give the commutation relations which reveal 
the fact that the isotopic spin group in addition to the 
SU3 subgroup of LU4 contains other subgroups (SUYs) 
in its structure: 

[ / o / ± ] = ± / ± , [ / + , / - ] = 2/o, (IV.14) 

[ / o , / ± > - ± / ± , [ / + , / - ] 2/o, (IV. 15) 

\joyS±] =dzs±, Ls+,sJ] = 2s0. (IV. 16) 
Here 

Jo=h(N2-Nz), s^hiNt-Ni), 

JO+SQ-\-IQ=0. 

Therefore the new symmetry group also contains the 
spin degree of freedom of elementary particles as a 
unitary content, as well as the isotopic spin. We must 
add, immediately, that a real detection of spin in ILU4 
must follow from a discussion similar to one used in the 
usual Lorentz group. Such a discussion will be deferred 
to the next paper. 

An invariant of the group LU4 is given by 

= •& trace(S,)2= b(b+l), (WAS) 

15 The remarks of the previous footnote apply here also. 

putting 2I=N1+N2 and J=7—| (F+<C) it can be 
written as 

6 2 = [ / ( / + l ) + | ( £ + F ) 2 - ( 2 / + l ) J ( £ + F ) ] . (IV.19) 

The operators £, Y, Jo, and h2 form a complete com
muting set. 

We may use the eigen-values of B2 to classify ele
mentary particles just as the eigenvalues of I2 are used 
to label various isotopic multiplets. We may therefore 
consider two general cases: 

(i) t>2>0, for 6 > 0 

(ii) 6 2 = 0 , for b=0. 

The eigenvalues of the occupation number operators N» 
= a^4

+ (i= 1,2,3) and N±= a^a^ range over (0,1, 2, • • •) 
and (• • • —3, — 2, — 1, 0), respectively. This can easily 
be established by using the four equations 

aM
t|0> = 0 (IV.20) 

for the vacuum state.16 Hence the eigenvalues of 

6 = 1 ( ^ 1 + ^ 2 + ^ 8 - ^ 4 ) (IV.21) 

are non-negative. 
Detailed discussion of these points will be made the 

subject matter of the next paper on this symmetry 
group. 

Note added in proof. The well-known properties of the 
group SU3 and the discussion in this paper demonstrate, 
beyond any shadow of doubt, that the group LU4 has 
double-valued representations. However, it does not 
seem to be possible to identify the various operators of 
the present group according to a conventional scheme. 
The latter may not be a necessity. 
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